Product and Labor Market Policies in a Model of Rent Creation and Division.

Alain Delacroix Roberto Samaniego

UQÀM GWU

April 2012
Big interest in studying labor and product market regulations.
Introduction (1)

- Big interest in studying labor and product market regulations.

- Yet, analysis of the two types of policies usually done separately.
Big interest in studying labor and product market regulations.

Yet, analysis of the two types of policies usually done separately.

Blanchard and Giavazzi (2003): analysis should be joint since

\[
\begin{align*}
PMR & \quad \rightarrow \quad \text{size of rents}, \\
LMR & \quad \rightarrow \quad \text{division of rents}.
\end{align*}
\]
Need occupational choice where agents can be *entrepreneurs*.
Need occupational choice where agents can be *entrepreneurs*.

b/c *self-employment* avoids regs, theoretically important margin.

also *SE* (1) is a large share, (2) varies much across countries, and (3) is correlated with regulations.
Need occupational choice where agents can be *entrepreneurs*.

b/c *self-employment* avoids regs, theoretically important margin.

also *SE* (1) is a large share, (2) varies much across countries, and (3) is correlated with regulations.

We build model of monopolistic competition in goods market w/ matching frictions in labor market, based on Ebell & Haefke (2009).

- includes an occupational decision,
- includes various types of policies.
What do we do?

- We look at correlations (i) between policies and LM outcomes, and (ii) between different policies.
What do we do?

- We look at correlations (i) between policies and LM outcomes, and (ii) between different policies.

- Quantitative analysis is useful b/c certain policies are highly correlated.
 - difficult to attribute particular LM outcome to particular policy.

We check how various policies affect the LM: unemployment / entrepreneurship / self-employment.

We find that SE is very responsive to policies.
What do we do?

- We look at correlations (i) between policies and LM outcomes, and (ii) between different policies.

- Quantitative analysis is useful b/c certain policies are highly correlated.
 - difficult to attribute particular LM outcome to particular policy.

- We check how various policies affect the LM:
 - unemployment / entrepreneurship / self-employment.
What do we do?

- We look at correlations (i) between policies and LM outcomes, and (ii) between different policies.

- Quantitative analysis is useful b/c certain policies are highly correlated.
 - difficult to attribute particular LM outcome to particular policy.

- We check how various policies affect the LM:
 - unemployment / entrepreneurship / self-employment.

- We find that SE is very responsive to policies.
<table>
<thead>
<tr>
<th>Country / Pays</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia / Australie</td>
<td>13,5</td>
</tr>
<tr>
<td>Austria / Autriche</td>
<td>12,8</td>
</tr>
<tr>
<td>Belgium / Belgique</td>
<td>15</td>
</tr>
<tr>
<td>Canada / Canada</td>
<td>9,8</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>17,3</td>
</tr>
<tr>
<td>Denmark / Danemark</td>
<td>8,8</td>
</tr>
<tr>
<td>Finland / Finande</td>
<td>12,9</td>
</tr>
<tr>
<td>France / France</td>
<td>8,8</td>
</tr>
<tr>
<td>Germany / Allemagne</td>
<td>11,4</td>
</tr>
<tr>
<td>Greece / Grèce</td>
<td>39</td>
</tr>
<tr>
<td>Hungary / Hongrie</td>
<td>13,5</td>
</tr>
<tr>
<td>Iceland / Islande</td>
<td>13,9</td>
</tr>
<tr>
<td>Ireland / Irlande</td>
<td>17,5</td>
</tr>
<tr>
<td>Italy / Italie</td>
<td>27,5</td>
</tr>
<tr>
<td>Japan / Japon</td>
<td>15,1</td>
</tr>
<tr>
<td>Korea / Corée</td>
<td>34,9</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>6,8</td>
</tr>
<tr>
<td>Mexico / Mexique</td>
<td>36,6</td>
</tr>
<tr>
<td>Netherlands / Pays-Bas</td>
<td>11,5</td>
</tr>
<tr>
<td>New Zealand</td>
<td>19,4</td>
</tr>
<tr>
<td>Norway / Norvège</td>
<td>7,3</td>
</tr>
<tr>
<td>Poland / Pologne</td>
<td>27,3</td>
</tr>
<tr>
<td>Portugal / Portugal</td>
<td>26,7</td>
</tr>
<tr>
<td>Slovak Republic</td>
<td>9,7</td>
</tr>
<tr>
<td>Spain / Espagne</td>
<td>18,3</td>
</tr>
<tr>
<td>Sweden / Suède</td>
<td>9,6</td>
</tr>
<tr>
<td>Switzerland / Suisse</td>
<td>11,9</td>
</tr>
<tr>
<td>Turkey / Turquie</td>
<td>49,4</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>13,2</td>
</tr>
<tr>
<td>United States / Etats-Unis</td>
<td>7,6</td>
</tr>
</tbody>
</table>
Tables and Figures

<table>
<thead>
<tr>
<th></th>
<th>LMP</th>
<th>PMP</th>
<th>EC(O)</th>
<th>EC(S)</th>
<th>State</th>
<th>Trade</th>
<th>OUTCOMES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EPL(S)</td>
<td>Rep</td>
<td>PMP</td>
<td>EC(O)</td>
<td>EC(S)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMP (O)</td>
<td>0.542***</td>
<td>0.452**</td>
<td>0.520***</td>
<td>0.600***</td>
<td>0.542***</td>
<td>0.601***</td>
<td>0.160</td>
</tr>
<tr>
<td>EPL(S)</td>
<td>0.354*</td>
<td></td>
<td>0.583***</td>
<td>0.701***</td>
<td>0.543***</td>
<td>0.670***</td>
<td>0.059</td>
</tr>
<tr>
<td>Rep</td>
<td>-0.007</td>
<td>0.065</td>
<td>-0.073</td>
<td>0.111</td>
<td>-0.038</td>
<td></td>
<td>-0.208</td>
</tr>
<tr>
<td>PMP (O)</td>
<td>0.781***</td>
<td>0.613***</td>
<td>0.809***</td>
<td>0.612***</td>
<td></td>
<td>-0.026</td>
<td>0.600***</td>
</tr>
<tr>
<td>EC(O)</td>
<td></td>
<td>0.641***</td>
<td>0.539***</td>
<td>0.315</td>
<td>-0.150</td>
<td>0.494***</td>
<td>0.988***</td>
</tr>
<tr>
<td>EC(S)</td>
<td></td>
<td>0.433**</td>
<td>0.248</td>
<td>0.060</td>
<td>0.554***</td>
<td>0.334</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td></td>
<td></td>
<td>0.417**</td>
<td>0.080</td>
<td>0.435**</td>
<td>0.555***</td>
<td></td>
</tr>
<tr>
<td>Trade</td>
<td>-0.057</td>
<td>0.329*</td>
<td></td>
<td></td>
<td>0.367**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1 – Correlations between EPL, PMP and labor/product market outcomes. Standard errors are reported in parentheses. One, two and three asterisks represent significance at the 10, 5 and 1% levels respectively.
1. *SE* important activity in magnitude and responsive to policies.
1. *SE* important activity in magnitude and responsive to policies.

2. $corr(u\%, EC) > 0$, $corr(u\%, PMP) > 0$, $corr(u\%, EPL)$ weakly positive.
Data findings (3): conclusion

1. \(SE \) important activity in magnitude and responsive to policies.

2. \(corr(u\%, EC) > 0, corr(u\%, PMP) > 0, \)
 \(corr(u\%, EPL) \) weakly positive.

3. \(SE \): positively correlated with \(EPL, PMP \) and \(EC \).
Data findings (3): conclusion

1. *SE* important activity in magnitude and responsive to policies.

2. $corr(u\%, EC) > 0$, $corr(u\%, PMP) > 0$, $corr(u\%, EPL)$ weakly positive.

3. *SE*: positively correlated with *EPL*, *PMP* and *EC*.

4. *Entrepreneurship*:

 basically not correlated with either *EPL*, nor *EC*, nor *PMP*.
Data findings (3): conclusion

1. \textit{SE} important activity in magnitude and responsive to policies.

2. \(\text{corr}(u\%, E\text{C}) > 0, \text{corr}(u\%, P\text{MP}) > 0, \text{corr}(u\%, E\text{PL}) \) weakly positive.

3. \textit{SE}: positively correlated with \textit{EPL}, \textit{PMP} and \textit{EC}.

4. \textit{Entrepreneurship}:

 basically not correlated with either \textit{EPL}, nor \textit{EC}, nor \textit{PMP}.

5. \textit{EPL} is positively correlated with \textit{EC} and \textit{PMP}.
Model: *basic structure*.

- Frictions in the labor market.
- Monopolistic competition in the goods market.
Model: *basic structure.*

- Frictions in the labor market.
- Monopolistic competition in the goods market.

- M sectors, each producing a differentiated good;
 within each sector, firms are Cournot oligopolists.
Model: *basic structure.*

- Frictions in the labor market.
- Monopolistic competition in the goods market.
- \(M \) sectors, each producing a differentiated good; within each sector, firms are Cournot oligopolists.
- Occupational choice: worker / entrepreneur / self-employed.
 - Choice based on individual characteristics: cost of running firm \((h)\), ability to operate as self-employed \((\omega)\).
Model: consumer problem.

- Household n’s problem is to

$$\max_{\{c_{j,n}\}} \left(\int_0^M \alpha_j^{1/\sigma} c_{j,n}^{\sigma/\sigma} dj \right)^{\sigma/\sigma-1},$$

s.t. $\int_0^M p_j c_{j,n} dj = P.l_n$.

- Solving generates aggregate demand for good j,

$$Y_j^d = \frac{1}{M} \left(\frac{p_j}{P} \right)^{-\sigma} l.$$
Workers transit between unemployment and employment:

\[
\begin{align*}
 rV_u &= bP + p_w(\theta)[V_w - V_u], \\
 rV_w &= w + \delta[V_u - V_w].
\end{align*}
\]

(Workers will be paid the same, regardless of entrepreneur type.)
Model: entrepreneurs (1).

The entrepreneur’s maximization problem is

\[V_e(l; h) = \max_{v, l'} \frac{1}{1+r} \left\{ hP + zl.p(l) - w(l)l - Pcl - \kappa P\nu
+ (1 - \delta_e) V_e(l'; h) + \delta_e [S_e(h) - Pc_e], \right\} \]

s.t. \(\frac{p(l)}{P} = \left(M \frac{zl + \hat{Y}_{-k}}{l} \right)^{-\frac{1}{\sigma}} \) and \(l' = p_f(\theta).v + (1 - \delta_s)l \).
Model: *bargaining*.

- Multi-employee firms → as if firms bargain w/ marginal worker.

- Thus,

\[\phi \cdot V'_e(l; h) = (1 - \phi) \cdot (V_w - V_u), \]

where \(\phi \) is workers’ bargaining power.

(Implies w independent of entrepreneur’s characteristics.)
Model: *entrepreneurs* (2).

- Combining FOC $[\nu]$ and envelope condition, we get

$$
\frac{p(l)}{P} = \frac{1}{z\varepsilon - 1} \left\{ \frac{r + \delta}{1 - \delta e} p_f(\theta) + \frac{d}{dl} [w(l).l/P] + c \right\},
$$

where ε is the firm-level elasticity of demand.

$(\varepsilon = \sigma/s$, where s is the individual firm's share of sector output.)

- Markup condition over *overall* marginal costs inclusive of vacancy posting costs.
Model: *entrepreneurs* (3).

- The bargaining rule implies

\[
\phi \left(z \frac{\varepsilon - 1}{\varepsilon} p(l) - \frac{d}{dl} [w(l)l] - Pc \right) = (1 - \phi) \cdot (w(l) - rV_u),
\]

or

\[
\phi l \cdot \frac{dw(l)}{dl} + w(l) - \phi z \frac{\varepsilon - 1}{\varepsilon} p(l) - (1 - \phi) rV_u + \phi Pc = 0.
\]
Model: entrepreneurs (4).

- Solving the differential equation, we get

\[
\begin{align*}
\frac{w}{P} &= b + \frac{\phi}{1-\phi} \frac{1}{1-\delta_e} \frac{\kappa}{p_f(\theta)} (r + \delta + p_w(\theta)), \\
\frac{p}{P} &= \frac{\epsilon - \phi}{\epsilon - 1} \frac{1}{z} \left\{ b + \frac{1}{1-\phi} \frac{1}{1-\delta_e} \frac{\kappa}{p_f(\theta)} (r + \delta + \phi p_w(\theta)) + c \right\}.
\end{align*}
\]

- Competition across sectors equalizes sectorial prices, so that

\[
\frac{p}{P} = 1.
\]
Model: *self-employed*.

- By being self-employed, agents avoid the \(LMR \) and \(PMR \).

- Self-employed do not suffer breakdowns. Thus,

\[
rV_{se}(\omega) = pz - P\omega.
\]
Model: *occupational choice (1).*

- We have

\[(1 + r) V_e(h, \omega) = hP + \pi + (1 - \delta_e) V_e(h, \omega) + \delta_e \max \{S_e(h, \omega) - Pc_e, V_u, V_{se}(h, \omega)\}\]

- Occupational decision based on choice in the max operator:

\[
\begin{align*}
\text{Ent.} & \implies \text{W,} \quad \text{if} \; S_e(h, \omega) - Pc_e > V_u, \\
\text{Ent.} & \implies \text{SE,} \quad \text{if} \; S_e(h, \omega) - Pc_e > V_{se}(h, \omega), \\
\text{SE} & \implies \text{W,} \quad \text{if} \; V_{se}(h, \omega) > V_u.
\end{align*}
\]
Model: *occupational choice* (2).

- Clearly: S_e does not depend on ω; V_{se} does not depend on h.

- Define \hat{h} and $\hat{\omega}$ so that

\[
\begin{align*}
S_e(\hat{h}) - P_{ce} &= V_u, & \implies \text{Ent.} & \implies W & \text{if } h > \hat{h}, \\
V_{se}(\hat{\omega}) &= V_u, & \implies \text{SE} & \implies W & \text{if } \omega < \hat{\omega}.
\end{align*}
\]

- What governs the choice of SE vs. entrepreneurship?
 - Agents choose entrepreneurship if $S_e(h) - P_{ce} > V_{se}(\omega)$,
 \[\text{i.e. if } h + \omega > \hat{h} + \hat{\omega}.\]
The diagram illustrates the relationship between wage rate (ω) and hours (h) for different types of employment.

- **Worker**: Located at the top of the diagram, indicating high wages at lower hours.
- **Entrepreneur**: Found at the intersection of the lower boundary, showing a lower wage at increased hours.
- **Self-employment**: Positioned within the triangle, depicting a middle ground where wages and hours balance.

The diagram suggests that as wages increase, hours tend to decrease, and vice versa, with distinct zones for worker, entrepreneur, and self-employment.
Model: closing the model.

- Proportions μ_e, μ_{se} and μ_w can be computed from $(\hat{h}, \hat{\omega})$ and the distributions $F_h(.)$ and $F_\omega(.)$.
 - We know that $\varepsilon = \sigma / s$. By definition of s,
 \[\varepsilon = \bar{\sigma} \left[\mu_e + \mu_{se} / l \right], \]
 where $\bar{\sigma} = \sigma \bar{L} / M$.

- In steady state,
 \[\frac{\mu_e}{\# \text{ of entrepreneurs}} \cdot \frac{|l|}{\# \text{ of employment}} = \frac{\mu_w}{\# \text{ of workers}} \cdot \frac{\rho_w(\theta)}{(\delta + \rho_w(\theta))} \cdot \frac{\text{employment rate}}{\text{employment rate}}. \]
Model: *extension with firing taxes.*

- **Firing taxes:** cost t per employee upon separation.

equivalent to replacing operating costs c with

 $$c' = c + (\delta_e + \delta_s).t.$$

- **Bargaining:** by staying, firm avoids payment of t:

 $$\phi.[V'_e(l) + t] = (1 - \phi).(V_w - V_u).$$
Normalization: $z = 1$ / Standard: $r = 0.04/12$.

δ_e & δ_s to target firm and job expected durations:

- 7-year firm survival probability of 45%,
- median job tenure of 4.2 years.

Targeting $\theta = 0.45$ as in Hall (2005).

$\kappa = 1$ (average recruitment costs ≈ 1.5 m. of earnings).

$\eta = 0.5$ (Pissarides and Petrongolo).

Matching intercept to match avg. unemployment duration.

Policy parameters:

- $b = 0.3$ (Shimer) [also tried $b = 0.6$ for robustness].
- $c_e = 20\%$ of monthly per capita income (Djankov et al.).
- $t = 0$.
U.S. calibration (2)

- $\phi = 0.433$ chosen to match wage / output ratio.

- “Markup condition” pins down operating cost $c = 0.230$.

- $\mu_e = 3.9\%$ and $\mu_{se} = 7.4\%$

- $l = 21.5$, and $\epsilon = \bar{\sigma}.[\mu_e + \mu_{se}/l]$ gives $\bar{\sigma}$.

- $(z, V_u(\theta)) \implies \hat{\omega}$ and entry condition $\implies \hat{h}$.

- $F_h(.)$ and $F_\omega(.)$ uniform dsn, with robustness analysis on range.
Changes in firing costs:

(fc affects firm surplus.)

<table>
<thead>
<tr>
<th></th>
<th>% Ent.</th>
<th>% SE</th>
<th>U%</th>
<th>Unemp. Dur.</th>
</tr>
</thead>
<tbody>
<tr>
<td>fc = 0</td>
<td>3,9</td>
<td>7,4</td>
<td>4,6</td>
<td>2,4</td>
</tr>
<tr>
<td>fc = 1</td>
<td>3,8</td>
<td>10,4</td>
<td>7,2</td>
<td>3,9</td>
</tr>
<tr>
<td>fc = 2</td>
<td>3,5</td>
<td>14,4</td>
<td>11,0</td>
<td>6,2</td>
</tr>
<tr>
<td>fc = 3</td>
<td>3,3</td>
<td>19,1</td>
<td>15,7</td>
<td>9,4</td>
</tr>
</tbody>
</table>

Corr. in data: 0 + weak +
Model: - + + +

% entrepreneurship less sensitive than %SE.
Changes in firing costs:

(fc does not affect firm surplus.)

<table>
<thead>
<tr>
<th>fc</th>
<th>% Ent.</th>
<th>% SE</th>
<th>U%</th>
<th>Unemp. Dur.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3,9</td>
<td>7,4</td>
<td>4,6</td>
<td>2,4</td>
</tr>
<tr>
<td>1</td>
<td>3,8</td>
<td>10,0</td>
<td>4,7</td>
<td>2,5</td>
</tr>
<tr>
<td>2</td>
<td>3,7</td>
<td>12,7</td>
<td>4,8</td>
<td>2,5</td>
</tr>
<tr>
<td>3</td>
<td>3,6</td>
<td>15,3</td>
<td>4,9</td>
<td>2,6</td>
</tr>
</tbody>
</table>

Corr. in data: 0 + weak +
Model: - + weak + +

% entrepreneurship less sensitive than %SE.
Changes in entry costs:

(months of individual GDP)

<table>
<thead>
<tr>
<th></th>
<th>% Ent.</th>
<th>% SE</th>
<th>U%</th>
<th>Unemp. Dur.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ce = .2 months</td>
<td>3.9</td>
<td>7.4</td>
<td>4.6</td>
<td>2.4</td>
</tr>
<tr>
<td>ce = 2.4 months</td>
<td>3.9</td>
<td>7.5</td>
<td>4.6</td>
<td>2.4</td>
</tr>
<tr>
<td>ce = 6 months</td>
<td>3.9</td>
<td>7.6</td>
<td>4.6</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Corr. in data: 0 + +

Model: ~ 0 ~ 0 0 0
Changes in ongoing regulatory costs:

<table>
<thead>
<tr>
<th>Flow reg cost</th>
<th>% Ent.</th>
<th>% SE</th>
<th>U%</th>
<th>Unemp. Dur.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow reg cost = 0</td>
<td>3.9</td>
<td>7.4</td>
<td>4.6</td>
<td>2.4</td>
</tr>
<tr>
<td>Flow reg cost = .05</td>
<td>3.7</td>
<td>14.0</td>
<td>4.9</td>
<td>2.6</td>
</tr>
<tr>
<td>Flow reg cost = .1 (oper. costs = .2298)</td>
<td>3.4</td>
<td>20.5</td>
<td>5.3</td>
<td>2.8</td>
</tr>
</tbody>
</table>

Corr. in data: 0 + +
Model: - + + +

% Entrepreneurship less sensitive than %SE.
Changes in unemployment income:

<table>
<thead>
<tr>
<th></th>
<th>% Ent.</th>
<th>% SE</th>
<th>U%</th>
<th>Unemp. Dur.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b = .3$</td>
<td>3.9</td>
<td>7.4</td>
<td>4.6</td>
<td>2.4</td>
</tr>
<tr>
<td>$b = .4$</td>
<td>4.0</td>
<td>6.6</td>
<td>5.3</td>
<td>2.8</td>
</tr>
<tr>
<td>$b = .5$</td>
<td>4.0</td>
<td>5.6</td>
<td>6.6</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Corr. in data: weak - weak - 0
Model: 0 - + +
1. *SE* reacts to policies as in data (but correlation with c_e is weak).
 → *SE* as a way to escape LMR and PMR.
Simulations: conclusion.

1. SE reacts to policies as in data (but correlation with c_e is weak).
 → SE as a way to escape LMR and PMR.

2. Limited (negative) reaction of entrepreneurship to policies considered, even for large policy changes.
Simulations: conclusion.

1. \(SE\) reacts to policies as in data (but correlation with \(c_e\) is weak).
 \(\rightarrow \) \(SE\) as a way to escape LMR and PMR.

2. Limited (negative) reaction of entrepreneurship to policies considered, even for large policy changes.

3. \(SE\) more responsive to policies than entrepreneurship.
Simulations: conclusion.

1. SE reacts to policies as in data (but correlation with c_e is weak). → SE as a way to escape LMR and PMR.

2. Limited (negative) reaction of entrepreneurship to policies considered, even for large policy changes.

3. SE more responsive to policies than entrepreneurship.

4. Unemployment reacts as in data (correlation w/ c_e is weak).
Conclusion / future research (1):

- Looking at data,
 - we showed that SE is an important margin to model when looking at regulations,
 - we established correlations of different policies with unemployment and occupational choices,
 - we established correlation between labor and product market regulations.

- We built a model with frictions in the labor market and monopolistic competition in the goods market to look at effect of policies on $u\%$ and occupational choice.
Conclusion / future research (2):

- We want to consider different types of heterogeneities (productivity \(\rightarrow\) size distribution).

- Endogenous separations might be an important margin, especially when looking at firing costs.

- No positive effects of regs. Focus on rent creation / division.

- Political economy / constituencies. Need to consider:
 - transitions.
 - partial (industry-level) reform, structure of reform.
 - exogenous variations across countries: Industry composition / historical differences / political systems?